Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 1054, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36828817

RESUMO

Electron beam quality is paramount for X-ray pulse production in free-electron-lasers (FELs). State-of-the-art linear accelerators (linacs) can deliver multi-GeV electron beams with sufficient quality for hard X-ray-FELs, albeit requiring km-scale setups, whereas plasma-based accelerators can produce multi-GeV electron beams on metre-scale distances, and begin to reach beam qualities sufficient for EUV FELs. Here we show, that electron beams from plasma photocathodes many orders of magnitude brighter than state-of-the-art can be generated in plasma wakefield accelerators (PWFAs), and then extracted, captured, transported and injected into undulators without significant quality loss. These ultrabright, sub-femtosecond electron beams can drive hard X-FELs near the cold beam limit to generate coherent X-ray pulses of attosecond-Angstrom class, reaching saturation after only 10 metres of undulator. This plasma-X-FEL opens pathways for advanced photon science capabilities, such as unperturbed observation of electronic motion inside atoms at their natural time and length scale, and towards higher photon energies.


Assuntos
Elétrons , Aceleradores de Partículas , Raios X , Lasers , Fótons
2.
Nat Commun ; 12(1): 2895, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34001874

RESUMO

Plasma wakefield accelerators are capable of sustaining gigavolt-per-centimeter accelerating fields, surpassing the electric breakdown threshold in state-of-the-art accelerator modules by 3-4 orders of magnitude. Beam-driven wakefields offer particularly attractive conditions for the generation and acceleration of high-quality beams. However, this scheme relies on kilometer-scale accelerators. Here, we report on the demonstration of a millimeter-scale plasma accelerator powered by laser-accelerated electron beams. We showcase the acceleration of electron beams to 128 MeV, consistent with simulations exhibiting accelerating gradients exceeding 100 GV m-1. This miniaturized accelerator is further explored by employing a controlled pair of drive and witness electron bunches, where a fraction of the driver energy is transferred to the accelerated witness through the plasma. Such a hybrid approach allows fundamental studies of beam-driven plasma accelerator concepts at widely accessible high-power laser facilities. It is anticipated to provide compact sources of energetic high-brightness electron beams for quality-demanding applications such as free-electron lasers.

3.
Philos Trans A Math Phys Eng Sci ; 377(2151): 20180182, 2019 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-31230572

RESUMO

The 'Trojan Horse' underdense plasma photocathode scheme applied to electron beam-driven plasma wakefield acceleration has opened up a path which promises high controllability and tunability and to reach extremely good quality as regards emittance and five-dimensional beam brightness. This combination has the potential to improve the state-of-the-art in accelerator technology significantly. In this paper, we review the basic concepts of the Trojan Horse scheme and present advanced methods for tailoring both the injector laser pulses and the witness electron bunches and combine them with the Trojan Horse scheme. These new approaches will further enhance the beam qualities, such as transverse emittance and longitudinal energy spread, and may allow, for the first time, to produce ultrahigh six-dimensional brightness electron bunches, which is a necessary requirement for driving advanced radiation sources. This article is part of the Theo Murphy meeting issue 'Directions in particle beam-driven plasma wakefield acceleration'.

4.
Philos Trans A Math Phys Eng Sci ; 377(2151): 20190215, 2019 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-31230575

RESUMO

This introductory article is a synopsis of the status and prospects of particle-beam-driven plasma wakefield acceleration (PWFA). Conceptual and experimental breakthroughs obtained over the last years have initiated a rapid growth of the research field, and increased maturity of underlying technology allows an increasing number of research groups to engage in experimental R&D. We briefly describe the fundamental mechanisms of PWFA, from which its chief attractions arise. Most importantly, this is the capability of extremely rapid acceleration of electrons and positrons at gradients many orders of magnitude larger than in conventional accelerators. This allows the size of accelerator units to be shrunk from the kilometre to metre scale, and possibly the quality of accelerated electron beam output to be improved by orders of magnitude. In turn, such compact and high-quality accelerators are potentially transformative for applications across natural, material and life sciences. This overview provides contextual background for the manuscripts of this issue, resulting from a Theo Murphy meeting held in the summer of 2018. This article is part of the Theo Murphy meeting issue 'Directions in particle beam-driven plasma wakefield acceleration'.

5.
Philos Trans A Math Phys Eng Sci ; 377(2151): 20180175, 2019 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-31230579

RESUMO

We present a conceptual design for a hybrid laser-driven plasma wakefield accelerator (LWFA) to beam-driven plasma wakefield accelerator (PWFA). In this set-up, the output beams from an LWFA stage are used as input beams of a new PWFA stage. In the PWFA stage, a new witness beam of largely increased quality can be produced and accelerated to higher energies. The feasibility and the potential of this concept is shown through exemplary particle-in-cell simulations. In addition, preliminary simulation results for a proof-of-concept experiment in Helmholtz-Zentrum Dresden-Rossendorf (Germany) are shown. This article is part of the Theo Murphy meeting issue 'Directions in particle beam-driven plasma wakefield acceleration'.

6.
Nat Commun ; 8: 15705, 2017 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-28580954

RESUMO

Plasma photocathode wakefield acceleration combines energy gains of tens of GeV m-1 with generation of ultralow emittance electron bunches, and opens a path towards 5D-brightness orders of magnitude larger than state-of-the-art. This holds great promise for compact accelerator building blocks and advanced light sources. However, an intrinsic by-product of the enormous electric field gradients inherent to plasma accelerators is substantial correlated energy spread-an obstacle for key applications such as free-electron-lasers. Here we show that by releasing an additional tailored escort electron beam at a later phase of the acceleration, when the witness bunch is relativistically stable, the plasma wave can be locally overloaded without compromising the witness bunch normalized emittance. This reverses the effective accelerating gradient, and counter-rotates the accumulated negative longitudinal phase space chirp of the witness bunch. Thereby, the energy spread is reduced by an order of magnitude, thus enabling the production of ultrahigh 6D-brightness beams.

7.
Sci Rep ; 7: 42354, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28176862

RESUMO

Space radiation is a great danger to electronics and astronauts onboard space vessels. The spectral flux of space electrons, protons and ions for example in the radiation belts is inherently broadband, but this is a feature hard to mimic with conventional radiation sources. Using laser-plasma-accelerators, we reproduced relativistic, broadband radiation belt flux in the laboratory, and used this man-made space radiation to test the radiation hardness of space electronics. Such close mimicking of space radiation in the lab builds on the inherent ability of laser-plasma-accelerators to directly produce broadband Maxwellian-type particle flux, akin to conditions in space. In combination with the established sources, utilisation of the growing number of ever more potent laser-plasma-accelerator facilities worldwide as complementary space radiation sources can help alleviate the shortage of available beamtime and may allow for development of advanced test procedures, paving the way towards higher reliability of space missions.

8.
Rev Environ Contam Toxicol ; 241: 39-72, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27300013

RESUMO

Concerning chronic toxicity, D. magna is the most sensitive species tested against MDA aquatic exposures, with a 21 days-NOEC of 0.00525 mg/L. Exposure of daphnids takes place via the aquatic phase. Other species of the same phylum (Arthropoda) appear to be less sensitive albeit with exposures via soil or sediment, with a 28 days-NOEC of 562 mg/kg d. w. soil (F. candida) and 41.3 mg/kg d. w. sediment (Hyalella azteca), for reproductive and survival endpoints, respectively. Also for acute toxicity, D. magna is more sensitive than the other species, with an 48 h-EC50 that spreads over two orders of magnitude, ranging from 0.019 to 2.7 mg/L. Fish show a more uniform reaction to MDA, with 96 h-LC50 ranging from about 20 to 60 mg/L; chronic data for fish are not available. Acute toxicity data for algae and cyanobacteria are in the range of 1-10 mg/L; based on growth rate, the 72 h-NOECr or ErC10 of MDA to algae is 0.3-9.3 mg/L.For sediment organisms, the black worm L. variegatus shows the highest sensitivity against MDA with a NOEC between ≤3.75 mg/kg and 30 mg/kg d. w., followed by the amphipod H. azteca. The lower sensitivity of L. variegatus in the second study compared to the first study is obviously attributable to the different feeding regimes (semi-continuous feeding against pre-spiked sediment). One argument might be that semi-continuous feeding allows the organisms to avoid the contaminated food. However, a change from semi-continuous feeding to sediment pre-spiked with nettle powder (Urtica sp.) results in an earlier and much stronger increase in ammonia concentration in the system. This became apparent after both studies on the blackworm were finalized. The ammonia 96 h-EC50 for the blackworm is 0.69 mg/L at pH = 8.2, and the 96 h-EC10 at pH = 8.2 is 0.33 mg/L (Hickey and Vickers, Arch Environ Contam Toxicol 26:292-298, 1994). As a result, the lower NOEC and LOEC in the second study with L. variegatus are probably attributable to interference by ammonia.MDA binds irreversibly to soil and sediment which may explain the general, but not uniform lower sensitivity of soil and sediment organisms against aquatic organisms. However, species with intense soil or sediment contact (L. variegatus and E. fetida) show in general lower NOEC values than those organisms with less direct contact (3.75 and 11.2 mg/kg d. w., respectively). On the one hand it may be hypothesized that this intense contact to soil bound MDA is one reason for the higher sensitivity; on the other hand, metabolic capacity against MDA of the organisms tested is unknown at this point in time and might as well explain differences in species sensitivity. For plants there are only acute data available, and in respect to acute toxicity L. sativa is more sensitive to MDA than E. fetida.Limited aquatic data available so far do not indicate that the toxicity of pMDA is different to MDA. In addition, the limited set of data generated with the marine M. macrocopa (crustacean), N. fustulum (diatom) and V. fisheri (bacteria) do not indicate that sea water organisms are more sensitive to MDA than fresh water organisms.In mammals, MDA is unlikely to interact with the endocrine sexual system; interaction with the adrenergic system cannot be ruled out, and effects of MDA on the thyroid hormone system have been demonstrated. MDA inhibits the thyroid peroxidase which might contribute to the thyroid gland tumors observed in chronic studies with rats and mice. Some anti-androgenic activity in in vitro studies with yeast cell did not prevail in in vivo studies with rats and mice.


Assuntos
Compostos de Anilina/toxicidade , Ecotoxicologia , Poluentes Químicos da Água/toxicidade , Amônia/metabolismo , Animais , Peixes , Sedimentos Geológicos
9.
Phys Rev Lett ; 114(8): 084801, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25768765

RESUMO

A method based on laser wakefield acceleration with controlled ionization injection triggered by another frequency-tripled laser is proposed, which can produce electron bunches with low energy spread. As two color pulses copropagate in the background plasma, the peak amplitude of the combined laser field is modulated in time and space during the laser propagation due to the plasma dispersion. Ionization injection occurs when the peak amplitude exceeds a certain threshold. The threshold is exceeded for limited duration periodically at different propagation distances, leading to multiple ionization injections and separated electron bunches. The method is demonstrated through multidimensional particle-in-cell simulations. Such electron bunches may be used to generate multichromatic x-ray sources for a variety of applications.

10.
Phys Rev Lett ; 108(3): 035001, 2012 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-22400749

RESUMO

Beam-driven plasma wakefield acceleration using low-ionization-threshold gas such as Li is combined with laser-controlled electron injection via ionization of high-ionization-threshold gas such as He. The He electrons are released with low transverse momentum in the focus of the copropagating, nonrelativistic-intensity laser pulse directly inside the accelerating or focusing phase of the Li blowout. This concept paves the way for the generation of sub-µm-size, ultralow-emittance, highly tunable electron bunches, thus enabling a flexible new class of an advanced free electron laser capable high-field accelerator.

11.
Phys Rev Lett ; 104(19): 195002, 2010 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-20866970

RESUMO

An ultracompact laser-plasma-generated, fs-scale electron double bunch system can be injected into a high-density driver/witness-type plasma wakefield accelerator afterburner stage to boost the witness electrons monoenergetically to energies far beyond twice their initial energy on the GeV scale. The combination of conservation of monoenergetic phase-space structure and fs duration with radial electric plasma fields E(r)∼100 GV/m leads to dramatic transversal witness compression and unprecedented charge densities. It seems feasible to upscale and implement the scheme to future accelerator systems.

12.
Phys Rev Lett ; 104(8): 084802, 2010 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-20366938

RESUMO

Laser-plasma wakefield-based electron accelerators are expected to deliver ultrashort electron bunches with unprecedented peak currents. However, their actual pulse duration has never been directly measured in a single-shot experiment. We present measurements of the ultrashort duration of such electron bunches by means of THz time-domain interferometry. With data obtained using a 0.5 J, 45 fs, 800 nm laser and a ZnTe-based electro-optical setup, we demonstrate the duration of laser-accelerated, quasimonoenergetic electron bunches [best fit of 32 fs (FWHM) with a 90% upper confidence level of 38 fs] to be shorter than the drive laser pulse, but similar to the plasma period.

13.
Rev Sci Instrum ; 81(3): 033301, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20370164

RESUMO

We report on new charge calibrations and linearity tests with high-dynamic range for eight different scintillating screens typically used for the detection of relativistic electrons from laser-plasma based acceleration schemes. The absolute charge calibration was done with picosecond electron bunches at the ELBE linear accelerator in Dresden. The lower detection limit in our setup for the most sensitive scintillating screen (KODAK Biomax MS) was 10 fC/mm(2). The screens showed a linear photon-to-charge dependency over several orders of magnitude. An onset of saturation effects starting around 10-100 pC/mm(2) was found for some of the screens. Additionally, a constant light source was employed as a luminosity reference to simplify the transfer of a one-time absolute calibration to different experimental setups.

14.
Rev Sci Instrum ; 81(1): 013307, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20113093

RESUMO

The characterization of the absolute number of electrons generated by laser wakefield acceleration often relies on absolutely calibrated FUJI imaging plates (IP), although their validity in the regime of extreme peak currents is untested. Here, we present an extensive study on the dependence of the sensitivity of BAS-SR and BAS-MS IP to picosecond electron bunches of varying charge of up to 60 pC, performed at the electron accelerator ELBE, making use of about three orders of magnitude of higher peak intensity than in prior studies. We demonstrate that the response of the IPs shows no saturation effect and that the BAS-SR IP sensitivity of 0.0081 photostimulated luminescence per electron number confirms surprisingly well data from previous works. However, the use of the identical readout system and handling procedures turned out to be crucial and, if unnoticed, may be an important error source.


Assuntos
Elétrons , Filme para Raios X , Calibragem , Modelos Lineares , Luminescência , Aceleradores de Partículas , Fatores de Tempo , Raios X
15.
Phys Rev Lett ; 102(19): 195001, 2009 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19518963

RESUMO

Electrons have been accelerated from solid target surfaces by sub-10-fs laser pulses of 120 microJ energy which were focused to an intensity of 2x10;{16} W/cm;{2}. The electrons have a narrow angular distribution, and their observed energies exceed 150 keV. We show that these energies are not to be attributed to collective plasma effects but are mainly gained directly via repeated acceleration in the transient field pattern created by incident and reflected laser, alternating with phase-shift-generating scattering events in the solid.

16.
Phys Rev Lett ; 102(12): 124801, 2009 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-19392288

RESUMO

We report on an electron accelerator based on few-cycle (8 fs full width at half maximum) laser pulses, with only 40 mJ energy per pulse, which constitutes a previously unexplored parameter range in laser-driven electron acceleration. The produced electron spectra are monoenergetic in the tens-of-MeV range and virtually free of low-energy electrons with thermal spectrum. The electron beam has a typical divergence of 5-10 mrad. The accelerator is routinely operated at 10 Hz and constitutes a promising source for several applications. Scalability of the few-cycle driver in repetition rate and energy implies that the present work also represents a step towards user friendly laser-based accelerators.

17.
Phys Rev Lett ; 101(8): 085002, 2008 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-18764625

RESUMO

Laser-driven, quasimonoenergetic electron beams of up to approximately 200 MeV in energy have been observed from steady-state-flow gas cells. These beams emitted within a low-divergence cone of 2.1+/-0.5 mrad FWHM display unprecedented shot-to-shot stability in energy (2.5% rms), pointing (1.4 mrad rms), and charge (16% rms) owing to a highly reproducible gas-density profile within the interaction volume. Laser-wakefield acceleration in gas cells of this type provides a simple and reliable source of relativistic electrons suitable for applications such as the production of extreme-ultraviolet undulator radiation.

18.
Rev Sci Instrum ; 78(8): 083301, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17764317

RESUMO

Particle pulses generated by laser-plasma interaction are characterized by ultrashort duration, high particle density, and sometimes a very strong accompanying electromagnetic pulse (EMP). Therefore, beam diagnostics different from those known from classical particle accelerators such as synchrotrons or linacs are required. Easy to use single-shot techniques are favored, which must be insensitive towards the EMP and associated stray light of all frequencies, taking into account the comparably low repetition rates and which, at the same time, allow for usage in very space-limited environments. Various measurement techniques are discussed here, and a space-saving method to determine several important properties of laser-generated electron bunches simultaneously is presented. The method is based on experimental results of electron-sensitive imaging plate stacks and combines these with Monte Carlo-type ray-tracing calculations, yielding a comprehensive picture of the properties of particle beams. The total charge, the energy spectrum, and the divergence can be derived simultaneously for a single bunch.


Assuntos
Algoritmos , Elétrons , Gases/química , Lasers , Modelos Químicos , Radiometria/instrumentação , Radiometria/métodos , Simulação por Computador , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Temperatura Alta , Doses de Radiação , Reprodutibilidade dos Testes , Espalhamento de Radiação , Sensibilidade e Especificidade
19.
Phys Rev Lett ; 96(10): 105004, 2006 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-16605744

RESUMO

Highly collimated, quasimonoenergetic multi-MeV electron bunches were generated by the interaction of tightly focused, 80-fs laser pulses in a high-pressure gas jet. These monoenergetic bunches are characteristic of wakefield acceleration in the highly nonlinear wave breaking regime, which was previously thought to be accessible only by much shorter laser pulses in thinner plasmas. In our experiment, the initially long laser pulse was modified in underdense plasma to match the necessary conditions. This picture is confirmed by semianalytical scaling laws and 3D particle-in-cell simulations. Our results show that laser-plasma interaction can drive itself towards this type of laser wakefield acceleration even if the initial laser and plasma parameters are outside the required regime.

20.
Mol Ecol ; 12(6): 1509-14, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12755879

RESUMO

The six endemic isopod species of Lake Baikal have been regarded as a small species flock with uncertain affinities to related asellids. We provide evidence from 16S rRNA sequences for polyphyletic origins of Baikalian Asellidae. One clade of two species is related to the Eurasian genus Asellus. The other clade, Baicalasellus, shows affinities to North American asellids and may have a long evolutionary history within the lake basin. Some speciation events within Baicalasellus clearly have a chromosomal basis. In contrast with numerous taxa exhibiting monophyletic radiations in ancient lakes, the endemic Baikalian isopods arose by multiple invasions and chromosomal mechanisms.


Assuntos
Cromossomos/genética , Evolução Molecular , Isópodes/genética , Filogenia , RNA Ribossômico 16S/genética , Animais , Sequência de Bases , Análise por Conglomerados , Primers do DNA , Água Doce , Geografia , Dados de Sequência Molecular , Dinâmica Populacional , Federação Russa , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA